Ознаки квадрата
Теорема 1. Якщо в чотирикутника всі сторони і всі кути рівні, то він є квадратом.
Теорема 2. Якщо діагоналі прямокутника перетинаються під прямим кутом, то він є квадратом.
Теорема 3. Якщо діагоналі ромба рівні, то він є квадратом.
Трапеція
Трапецією називається чотирикутник, у якого тільки дві протилежні сторони паралельні. Ці сторони називаються основами трапеції, а дві інші — бічними сторонами.
Трапеція, в якої бічні сторони рівні, називається рівнобічною (див. рисунок нижче зліва). Якщо одна з бічних сторін трапеції перпендикулярна до основ, трапеція називається прямокутною (рисунок нижче справа).
Теорема 1. Кути трапеції, які прилеглі до однієї бічної сторони, у сумі дорівнюють .
Відрізок, що сполучає середини бічних сторін трапеції, називається середньою лінією трапеції.
Теорема 2. Середня лінія трапеції паралельна основам і дорівнює їх півсумі.
Зверніть увагу: середня лінія не проходить через точку перетину діагоналей трапеції (рисунок посередині).
Висотою трапеції називається відрізок прямої, перпендикулярної до основ трапеції з кінцями на основах трапеції. Найчастіше висоту проводять через вершини верхньої основи або через точку перетину діагоналей (рисунок 1). Усі висоти трапеції рівні між собою.
Бісектриса кута трапеції, якщо вона перетинає основу трапеції, відтинає від неї рівнобедрений трикутник (рисунок 2).
Рис. 1
Рис. 2
Властивості рівнобічної трапеції
1. У рівнобічній трапеції кути при основах рівні (рисунок нижче зліва).
2. У рівнобічній трапеції діагоналі рівні.
3. У рівнобічній трапеції діагоналі створюють з основою рівні кути.
4. У рівнобічній трапеції діагоналі, перетинаючись, утворюють два рівнобедрені трикутники, основами яких є основи трапеції (рисунок справа).
Додаткові побудови, що використовуються для розв’язуваннязадач на трапецію
1) На рисунку ; ; BCMN — прямокутник.
Зверніть увагу: якщо (див. рисунок), то :
2) На рисунку ; ABCF — паралелограм. ; ; .
3) На рисунку ; BCKD — паралелограм. . Сторони : ; .
Висота CF збігається з висотою трапеції. Якщо трапеція ABCD рівнобічна, то — рівнобедрений.
Теорема Фалеса
Теорема 1 (Фалеса). Якщо паралельні прямі, які перетинають сторони кута, відтинають на одній його стороні рівні відрізки, то вони відтинають рівні відрізки й на другій його стороні.
На рисунку ;
; .
Зверніть увагу: .
Теорема має місце не тільки для сторін кута, а й для довільних прямих.
Теорема 2 (про пропорційні відрізки). Паралельні прямі, які перетинають сторони кута, відтинають від сторін кута пропорційні відрізки.
На рисунку .
Також правильним є:
;
;
і т. д.
Трикутники
Середня лінія трикутника
Середньою лінією трикутника називається відрізок, який сполучає середини двох його сторін.
Теорема 1. Середня лінія трикутника, яка сполучає середини двох його сторін, паралельна третій стороні й дорівнює її половині.
На рисунку праворуч:
;.
У трикутнику можна провести три середні лінії. Вони утворюють трикутник з такими ж кутами, як даний, і вдвічі меншими сторонами.
На рисунку нижче ABC — трикутник; MN, NK, MK — його середні лінії.
Чотирикутники AMNK, BNKM, MNCK — паралелограми.
Теорема 2. Середня лінія трикутника ділить навпіл висоту, бісектрису, медіану трикутника, що проведені до паралельної їй сторони:
Спираючись на властивість середньої лінії, легко довести, що:
1) середини сторін чотирикутника є вершинами паралелограма (рисунок 1);
2) середини сторін прямокутника є вершинами ромба (рисунок 2);
3) середини сторін ромба є вершинами прямокутника (рисунок 3);
Рис. 1
Рис. 2 Рис. 3
4) середини сторін квадрата є вершинами квадрата (рисунок нижче зліва);
5) медіани довільного трикутника перетинаються в одній точці й діляться нею у відношенні 2 : 1, рахуючи від вершини (і т. д.) (рисунок справа).
Теорема Піфагора
Теорема 1 (Піфагора). У прямокутному трикутнику квадрат гіпотенузи дорівнює сумі квадратів катетів.
Правильною є і теорема, обернена до теореми Піфагора.
Теорема 2 (обернена). Коли в трикутнику сторони a, b, c і , то цей трикутник є прямокутним з гіпотенузою c.
Теорема 3. У прямокутному трикутнику будь-який із катетів менший за гіпотенузу.
Корисно пам’ятати довжину сторін деяких прямокутних трикутників.
Єгипетський трикутник: сторони дорівнюють 3, 4, 5 одиниць.
Тобто можливі варіанти: 3, 4, 5 або 6, 8, 10, або 3k, 4k, 5k, де k ∈ N.
Також прямокутними є трикутники зі сторонами, які дорівнюють 5k, 12k, 13k; 8k, 15k, 17k; 7k, 24k, 25k, де k ∈ N.
Перпендикуляр і похила
Нехай BA — перпендикуляр, опущений із точки B на пряму a, а С — будь-яка точка прямої a, відмінна від A (див. рисунок). Відрізок BC називається похилою, проведеною з точки B до прямої a. Точка С називається основою похилої. Відрізок AС називається проекцією похилої.
Властивості похилих
Теорема. Коли з даної точки до прямої проведено перпендикуляр і похилі, то будь-яка похила більша від перпендикуляра; рівні похилі мають рівні проекції, а з двох похилих більша та, в якої проекція більша.
На рисунку BD, BC, BP — похилі, AB — перпендикуляр, ; ;.
Нерівність трикутника
Теорема. Які б не були три точки, відстань між будь-якими двома із цих точок не більша, ніж сума відстаней від них до третьої точки.
Звідси випливає, що у будь-якому трикутнику кожна сторона менша за суму двох інших сторін, але більша за модуль різниці двох інших сторін.
Якщо a, b і c — сторони трикутника (див. рисунок), то
;
;
.
|