Моделювання як одну з найважливіших категорій процесу пізнання неможливо відокремити від розвитку людства. Ще з дитинства людина пізнає світ, спочатку через


Скачати 1.37 Mb.
Назва Моделювання як одну з найважливіших категорій процесу пізнання неможливо відокремити від розвитку людства. Ще з дитинства людина пізнає світ, спочатку через
Сторінка 8/15
Дата 17.03.2013
Розмір 1.37 Mb.
Тип Лекция
bibl.com.ua > Інформатика > Лекция
1   ...   4   5   6   7   8   9   10   11   ...   15

Требования к моделям


Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

  • адекватность – соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например, метод последовательных приближений;

  • точность – степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;

  • универсальность – применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;

  • целесообразная экономичность – точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. Удачный выбор модели, как показывает практика, — результат компромисса между отпущенными ресурсами и особенностями используемой модели и др.

Выбор модели и обеспечение точности моделирования считается одной из самых важных задач моделирования.

Точность моделей

Погрешности моделирования вызываются как объективными причинами, связанными с упрощением реальных систем, так и субъективными, обусловленными недостатком знаний и навыков, особенностями характера того или иного человека. Погрешности можно предотвратить, компенсировать или учесть. И всегда обязательна оценка правильности получаемых результатов. В технике быструю оценку точности модели часто проводят следующими способами:

  • проверяют соответствие результатов физическому (здравому) смыслу. Удобно это делать для частного случая модели, когда решение очевидно. Иногда даже говорят, что ещё перед решением задачи инженер уже должен представлять характер и порядок ожидаемого результата. Но точность такого представления зависит от развитости физического воображения и опыта работы с подобными системами;

  • проверяют выполнение частных очевидных условий задачи, что также позволяет отсечь неприемлемые решения;

  • проверяют соблюдение тенденции изменения величин и знаков результатов (монотонность, цикличность, плавность и т.п.);

  • проверяют правильность размерности полученного результата (если работа ведется с аналитическими зависимостями).

Известно, что посредством грубых измерений, использования контрольно-измерительных приборов с низкой точностью или приближенных исходных данных невозможно получить точные результаты. С другой стороны, бессмысленно вести, например, расчет с точностью до грамма, если результат потом нужно округлять (скажем, указывать в формуляре) с точностью до ста грамм, или же определять среднюю величину точнее составляющих её значений, и т.д. Поэтому важно помнить о следующем:

  • точность результатов расчетов и экспериментальных исследований модели не может превысить точности исходных данных, используемых приборов, измерительных инструментов и т. п.;

  • вид выбираемой модели должен согласовываться с точностью исходных данных и потребной точностью результатов;

  • желаемая точность результатов должна соответствовать нуждам и реалиям практики.

Основные виды моделей


По способу отображения действительности различают три основных вида моделей — эвристические, натурные и математические.

Эвристические модели, как правило, представляют собой образы, рисуемые в воображении человека. Их описание ведется словами естественного языка (например, вербальная информационная модель) и, обычно, неоднозначно и субъективно. Эти модели неформализуемы, хотя и рождаются на основе представления реальных процессов и явлений.

Эвристическое моделирование — основное средство вырваться за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии человека, его опыта и эрудиции. Эвристические модели используют на начальных этапах проектирования или других видов деятельности, когда сведения о разрабатываемой системе ещё скудны. На последующих этапах проектирования эти модели заменяют на более конкретные и точные.

Отличительной чертой натурных моделей является их подобие реальным системам (они материальны), а отличие состоит в размерах, числе и материале элементов и т.п. По принадлежности к предметной области модели подразделяют на следующие:

  • Физические модели — реальные изделия, образцы, экспериментальные и натурные модели, когда между параметрами системы и модели одинаковой физической природы существует однозначное соответствие. Выбор размеров таких моделей ведется с соблюдением теории подобия. Физические модели подразделяются на объемные (модели и макеты) и плоские (тремплеты):

  • в данном случае под (физической) моделью понимают изделие или устройство, являющееся упрощенным подобием исследуемого объекта или позволяющее воссоздать исследуемый процесс или явление. Например, предметные модели, как уменьшенная копия оригинала (глобус как модель Земли, игрушечный самолёт с учётом его аэродинамики);

  • под тремплетом понимают изделие, являющееся плоским масштабным отображением объекта в виде упрощенной ортогональной проекции или его контурным очертанием. Тремплетеотанарные вырезают из пленки, картона и т.п. и применяют при исследовании и проектировании зданий, установок, сооружений;

  • под макетом понимают изделие, собранное из моделей и/или тремплетов.

Физическое моделирование — основа наших знаний и средство проверки наших гипотез и результатов расчетов. Физическая модель позволяет охватить явление или процесс во всём их многообразии, наиболее адекватна и точна, но достаточно дорога, трудоемка и менее универсальна. В том или ином виде с физическими моделями работают на всех этапах проектирования;

  • Технические модели.

  • Социальные модели.

  • Экономические модели, например, бизнес-модель, и т.д.

Математические модели — формализуемые, т.е. представляют собой совокупность взаимосвязанных математических и формально-логических выражений, как правило, отображающих реальные процессы и явления (физические, психические, социальные и т.д.). По форме представления бывают:

  • аналитические модели – их решения ищутся в замкнутом виде, в виде функциональных зависимостей. Удобны при анализе сущности описываемого явления или процесса и использовании в других математических моделях, но отыскание их решений бывает весьма затруднено;

  • численные модели – их решения — дискретный ряд чисел (таблицы). Модели универсальны, удобны для решения сложных задач, но не наглядны и трудоемки при анализе и установлении взаимосвязей между параметрами. Реализуются в виде программных комплексов — пакетов программ для расчета на компьютере;

  • формально-логические информационные модели — это модели, созданные на формальном языке. Например:

  • модель формальной системы в математике и логике как любая совокупность объектов, свойства которых и отношения между которыми удовлетворяют аксиомам и правилам вывода формальной системы;

  • модель в теории алгебраических систем как совокупность некоторого множества и заданных на его элементах свойств и отношений;

  • эталонная модель.

Построение математических моделей возможно следующими способами:

  • аналитическим путем, т.е. выводом из физических законов, математических аксиом или теорем;

  • экспериментальным путем, т.е. посредством обработки результатов эксперимента и подбора аппроксимирующих (приближенно совпадающих) зависимостей.

Математические модели более универсальны и дешевы, позволяют поставить «чистый» эксперимент (т.е. в пределах точности модели исследовать влияние какого-то отдельного параметра при постоянстве других), прогнозировать развитие явления или процесса, отыскать способы управления ими. Математические модели — основа построения компьютерных моделей и применения вычислительной техники.

Результаты математического моделирования нуждаются в обязательном сопоставлении с данными физического моделирования — с целью проверки получаемых данных и для уточнения самой модели. С другой стороны, любая формула — это разновидность модели и, следовательно, не является абсолютной истиной, а всего лишь этап на пути её познания.

К промежуточным видам моделей можно отнести:

  • графические модели – занимают промежуточное место между эвристическими и математическими моделями. Представляют собой различные изображения:

  • графы;

  • схемы;

  • эскизы;

  • чертежи;

  • графики;

  • аналоговые модели – позволяют исследовать одни физические явления или математические выражения посредством изучения других физических явлений, имеющих аналогичные математические модели и др.

Существует и другие виды «пограничных» моделей, например, экономико-математическая и т.д.

Выбор типа модели зависит от объема и характера исходной информации о рассматриваемом устройстве и возможностей инженера, исследователя. По возрастанию степени соответствия реальности модели можно расположить в следующий ряд:

эвристические (образные) — математические — натурные (экспериментальные).
1   ...   4   5   6   7   8   9   10   11   ...   15

Схожі:

2. Сучасні західні школи праворозуміння Основними сучасними західними школами право розуміння є
Праворозуміння являє собою одну з найважливіших правових категорій, що відображає одночасно як процес так і результат цілеспрямованого...
Роботи «ТЕМА РОБОТИ» затверджена наказом № … від «…» 2012 р
Модель бізнес-процесу, результати імітаційного моделювання, результату аналізу виконання імітаційного моделювання процесу, код на...
Методичні рекомендації щодо використання загальнорозвивальних вправ...
Пізнає світ! І що найцікавіше — пальчиками. Написано чимало літератури про залежність від рухливості пальців розвитку розумової діяльності...
Закономірності
«метод», «методологія», виявити евристичні можливості методів наукового пізнання, а також дослідити діалектику взаємопереходів від...
Найважливіша проблема філософії людина-світ. Ф наука світоглядна....
Ф. це не просто особлива наукова дисципліна, а ще і специфічний тип мислення і навіть емоційний настрій, система світоглядних почуттів...
Де підстерігає небезпека нас і наших дітей?
Коли дитина тільки пізнає, світ, її увагу притягують і такі предмети, як розетка, штепсель, проводка
План Природа і призначення процесу пізнання. Пізнання як процес відображення...
Пізнання, як і свідомість в цілому, реально існує за допомогою мови. Пізнавальний процес відображає не тільки наявні у дійсності...
Поняття про моделі та моделювання. Класифікація моделей. Поняття...
Одним із важливих методів добування нової інформації людиною, пізнання нею довколишнього світу є моделювання
Реферат на тему: „ Відчуття та діяльність“
Знання про зовнішній і свій внутрішній світ людина набуває в ході чуттєвого та логічного пізнання дійсності за допомогою пізнавальних...
Одним з найважливіших елементів ринкового механізму є кон­куренція....
Для подібної галузі не може бути побудовано абстрактної моделі, як це можна зробити у випадках чистої монополії і чистої конкуренції....
Додайте кнопку на своєму сайті:
Портал навчання


При копіюванні матеріалу обов'язкове зазначення активного посилання © 2013
звернутися до адміністрації
bibl.com.ua
Головна сторінка