Черняков Г. О., Кочін І. В., Сидоренко П.І. Медицина катастроф


Скачати 0.8 Mb.
Назва Черняков Г. О., Кочін І. В., Сидоренко П.І. Медицина катастроф
Сторінка 1/6
Дата 20.04.2013
Розмір 0.8 Mb.
Тип Закон
bibl.com.ua > Медицина > Закон
  1   2   3   4   5   6


ІВАНО-ФРАНКІВСЬКИЙ національний МЕДИЧНИЙ УНІВЕРСИТЕТ

КАФЕДРА екстреної медичної допомоги та МЕДИЦИНИ КАТАСТРОФ

Затверджую”

Завідуючий кафедрою ЕМД та МК

професор В. Криса

“____”________________ 2011 р.
Методична розробка для студентів

для проведення практичного заняття з предмету

Медицина надзвичайних ситуацій


Тема № 3.

Аварії на радіаційно небезпечних об’єктах,
їх медико-санітарні наслідки”

Підготував викладач Фабрика Р. Р.



Обговорено на засіданні кафедри

31 серпня 2011 р.

Протокол № 1 .

Івано-Франківськ, 2011




Навчальна мета

Засвоїти характеристики аварій на РНО, методик оцінки радіаційної обстановки. Вивчити прилади радіаційної розвідки, освоїти і навчитись користуватись засобами колективного, індивідуального та медичного захисту.



Час

180 хв.



Місце проведення

Аудиторія



Навчально-матеріальне оснащення

а) Література

  1. Черняков Г.О., Кочін І.В., Сидоренко П.І. Медицина катастроф. – К.: “Здоров’я”, 2001. – 348с.

  2. Волошинський О.В., Паращук Л.Д. Радіологія надзвичайних ситуацій., - Івано-Франківськ, 2003.

  3. Завьялов В.Н. Учебное пособие по гражданской обороне. – М., 1989. – 271 с.

  4. Воробйов О.О., Кардаш В.Є. Методика оцінки радіаційної і хімічної обстановки. Прилади радіаційного і хімічного контролю. Методичний посібник. – Чернівці, 1988. – 20с.

  5. Закон України “Про цивільну оборону України” / відомості Верховної Ради України, 1993р., №14, с. 124.

  6. Методичний посібник для ВНЗ України “Цивільна оборона”, 2004.






Навчальні питання і розрахунок часу




Вступ. Характеристика аварій на РНО

15 хв.



Причина та медико-санітарні наслідки аварій на РНО

35 хв.



Оцінка радіаційної обстановки в осередку НС

35 хв.



Прилади радіаційної розвідки

30 хв.



Засоби медичного захисту при аваріях на РНО

30 хв



Засоби колективного та індивідуального захисту при аваріях на РНО

25 хв.



Підведення підсумків

10 хв.


1. ЯДЕРНІ АВАРІЇ
Постійне збільшення енерговикористання привело до значного зменшення світових запасів органічного палива — вугілля, нафти, газу. Це зумовило перехід промисловості на ядерну технологію виробництва електроенергії.

Атомні джерела електроенергії мають ряд істотних переваг перед іншими електроенергетичними технологіями. По-перше, вони набагато рентабельніші, а виробництво електроенергії на атомних електростанціях (АЕС) значно дешевше, ніж на теплових, які використовують органічну сировину. По-друге, атомна енергетика дозволяє зекономити традиційні джерела енергії для використання в інших галузях промисловості (хімічній, нафтохімічній та ін.). Третя перевага — при грамотному проектуванні та експлуатації АЕС їх безпека для навколишнього середовища набагато вища, ніж теплових електростанцій, працюючих на традиційних енергоносіях. В останніх викиди шкідливих речовин в довкілля більш негативно впливають на екологію та здоров’я людини. Крім економічних існують також екологічні причини. Теплові електростанції є найпотужнішими джерелами надходження в атмосферу вуглекислого газу, оксидів сірки та азоту. Крім того вони самі є радіоактивними забруднювачами довкілля. Так теплова електростанція середньої потужності (1млн. кВт/год) за рік споживає 4-5 млн. тон вугілля, в якому містяться певні концентрації радіонуклідів, зокрема урану (1-2,5 г/т вугілля), технецію (2-5 г/т вугілля).

Отже, на сучасному етапі, поки не знайдуться альтернативні джерела електроенергії, здатні повністю забезпечити потреби народного господарства, без атомної енергетики людству не обійтися.

Перша в світі АЕС була споруджена в колишньому СРСР під керівництвом академіка I.В.Курчатова і здана в експлуатацію 27 червня 1954 року (м. Обнінськ Калузької області). В теперішній час в світі електроенергію виробляють понад 400 ядерних реакторів сумарною потужністю більше 280 000 МВт. З них на території України працюють 5 АЕС з 17 ядерними реакторами загальною потужністю 16 МВт, які забезпечують біля 40% валового виробництва електроенергії в країні. За останні 10 років частка електроенергії, що виробляється на АЕС, збільшилась в світі майже в 3 рази (з 5,3 до 15%).

Розвиток ядерних технологій виробництва електроенергії породив нові проблеми, в тому числі радіоактивне забруднення оточуючого середовища, особливо в результаті аварій. Незважаючи на суворі заходи безпеки, імовірність таких аварій повністю не виключена. Теоретично їх можливість становить 1,7.10-5 (за розрахунками німецьких вчених) і 1,7.10-6 (шведських). Практично ймовірність крупних аварій на АЕС становить один раз на 10 років.

Згідно опублікованих даних, за весь період розвитку ядерної енергетики в світі відбулось понад 150 аварій на ядерних реакторах з викидом в оточуюче середовище радіоактивних продуктів. Аварія на Чорнобильській АЕС показала недосконалість багатьох положень в системі контролю за навколишнім середовищем, як при нормальній роботі АЕС, так і при виникненні ядерних аварій любого масштабу.

За період з 1958 по 1986 роки в різних країнах світу відбулось понад 30 великих радіаційних аварій на ядерних реакторах, набільшою з яких стала аварія на Чорнобильській АЕС. Серйозні наслідки мали події в 1957 р. на АЕС у Віндскейлі в Англії, в 1978 р. на АЕС “Трі-Майл-Айленд” в США. В практиці експлуатації АЕС мали місце чисельні випадки викиду радіонуклідів за межі станції. Тільки за період 1971-1984 рр. в 14 країнах-виробниках ядерної енергетики, відбулось понад 100 аварій, які привели до різноманітних радіоактивних викидів. Як правило, їх величина була незначною. Атомні електростанції проектувались і будувались з високою надійністю. Вчені мали надію отримати джерело електроенергії, абсолютно безпечне в експлуатації. Крім того, в середині ХХ століття, коли ядерні технології знаходились тільки в стадії розробки були неодноразові випадки скиду радіоактивних відходів в довкілля. Так, наприклад, на Південному Уралі радіоактивні матеріали з Челябінського воєнного радіохімічного комплексу протягом 1948-1956 років скидувались безпосередньо в річку Теча. За цей час було синуто біля 76 млн м3 радіоактивних вод загальною активністю 1017 Бк (2,75 МКі).

На жаль, повністю усунути ядерні аварії неможливо. Звести кількість аварій до мінімуму, а також організувати заходи по ліквідації їх наслідків — основне завдання як електроенергетичної галузі, так і медичної служби військ, цивільної оборони.

Втягнутими в радіаційну аварію на атомних електростанціях стають значні контингенти населення, що вимагає проведення самих радикальних заходів у стислі терміни. Складність і багатоплановість проблеми радіаційного захисту населення зумовили необхідність широкого співробітництва в її розробці не тільки країн, які мають АЕС, але і ряду міжнародних організацій, наприклад Міжнародного агентства з атомної енергії (МАГАТЕ), Продовольчої та сільськогосподарської організації ООН (ФАО), Всесвітньої організації охорони здоров’я (ВООЗ), Міжнародної комісії з радіоактивного захисту (МКРЗ).

1.1. Коротка характеристика АЕС

АЕС є одним із центральних елементів в складному ланцюгу використання ядерних матеріалів, так званому “ядерному паливному циклі” (ЯПЦ) . Це понятття охоплює і характеризує послідовність операцій з радіоактивними матеріалами в ядерній енергетиці. Він об’єднує такі технології, як:

— видобування, подрібнення і концентрування уранової руди;

— вилучення урану з уранової руди та його збагачення радіонуклідом 235U;

— перетворення урану в паливо і виготовлення паливних елементів;

— використання паливних елементів в ядерних реакторах для отримання енергії (АЕС, теплоелектроцентралях, станціях побутового та промислового теплозабезпечення, атомних надводних і підводних суднах та ін);

— виділення з відпрацьованого палива плутонію, урану та інших радіонуклідів, які застосовуються в різних галузях виробництва (наука, техніка, медицина, тощо);

— регенерація палива і виготовлення паливних елементів;

— транспортування свіжого і відпрацьованого палива, радіоактивних матеріалів та відходів;

— зберігання палива, радіоактивних матеріалів і відходів та їх захоронення.

В багатьох країнах світу, в тому числі і в Україні, немає повного (замкнутого) ЯПЦ, функціонують окремі його елементи. До них відносяться уранові копальні рудники, енергетичні та дослідницькі реактори, сховища ядерних матеріалів, спеціальні транспортні підприємства, пункти захоронення радіоактивних відходів та деякі інші.

Технологічна схема виробництва електроенергії на АЕС подібна до такої на теплових електростанціях і полягає в наступному. Теплова енергія, яка виділяється в активній зоні реактора при поділі ядер атомів палива, відводиться теплоносієм і використовується для отримання водяної пари, що приводить в дію турбогенератор.

Таким чином, основним елементом, який відрізняє АЕС від теплової електростанції, є ядерний реактор — пристрій, в якому здійснюється керована самопідтримуюча ланцюгова реакція поділу ядер атомів ядерного палива.

Він включає в себе наступні елементи.

Активна зона — простір, в якому в результаті ланцюгової реакції поділу відбувається виділення внутрішньоядерної енергії. В цій зоні певним чином розташовані тепловиділяючі елементи з ядерним паливом, сповільнювач нейтронів та нейтроно-поглинаючі стержні, за допомогою яких здійснюється управління ланцюговою реакцією ядерного поділу. Для відведення тепла від тепловидільних елементів через активну зону безперервно прокачується теплоносій.

Тепловиділяючі елементи (твели) — основний конструктивний вузол технологічних каналів активної зони, який містить матеріал поділу і забезпечує передачу тепла від нього при ланцюговій реакції до теплоносія. Твел складається з активної частини, яка містить ядерне паливо, зовнішньої оболонки та допоміжних деталей. Як ядерне паливо в більшості реакторів використовується природній уран, збагачений ізотопом з масовим числом 235 у вигляді диоксиду (UО2). Ступінь збагачення знаходиться в межах від десятих долей до декількох відсотків.

Циркуляційний контур теплоносія — пристрій, призначений для відводу тепла з активної зони (первинний контур ядерного реактора). Теплоносій не повинен мати в своєму складі нейтроно-захоплюючі елементи, руйнуватись під впливом випромінювання, і в той же час бути дешевим і безпечним. Найчастіше в цій якості використовуються вода (легка або важка), газ (гелій, азот, двоокис вуглецю), рідкий метал (натрій) та деякі інші речовини.

Відбивач нейтронів — шар матеріалу, що не ділиться. Він оточує активну зону реактора для зменшення виходу з неї нейтронів. Це відбувається шляхом поглинання останніх або екранування з частковим їх поверненням в зону. Добрими матеріалами для відбивача є графіт, берилій, важка вода.

Система управління і захисту — сукупність пристроїв, призначених для забезпечення надійного контролю потужності (інтенсивності ланцюгової реакції), управління та аварійного виключення реактора.

Біологічний захист — пристрій, який, при роботі ядерного реактора знижує інтенсивність випромінювання до безпечного для персоналу рівня. Конструкція і матеріали захисту залежать від призначення реактора, його типу, потужності.

В реакторах, які працюють на повільних нейтронах, необхідно зменшувати їх енергію (до 1 еВ). Для цього між тепловиділяючими елементами розміщують сповільнювач пристрій з матеріалів з низькою атомною вагою (наприклад графіт, звичайна та важка вода, в деяких випадках органічні сполуки). Реактори, які працюють на швидких нейтронах (з енергією понад 100 кеВ), сповільнювачів не вимагають.

Для отримання ланцюгової самопідтримуючої реакції поділу реактор переводять в так званий критичний стан. При цьому кількість нейтронів, утворених при поділі, повинна дорівнювати їх кількості, втраченій в результаті поглинання. Критичний стан реактора характеризується ефективним коефіцієнтом розмноження — Кеф. При Кеф меншому 1, реактор знаходиться в підкритичному стані і ланцюгова реакція не підтримується, а якщо Кеф більший 1, то ядерний реактор переходить в надкритичний стан і потужність його поступово збільшується і може досягти параметрів, при яких він руйнується. Тому цей показник ядерного реактора, працюючого на повільних нейтронах, регулюється за допомогою регулюючих стержнів аварійного захисту. Вони містять в собі речовини, що добре поглинають нейтрони (бор, кадмій, гафній та інші), але найчастіше для цього використовується карбід бору (В2С) та суміш В2С–АI2О3. При введенні таких стержнів в активну зону кількість нейтронів, які беруть участь в поділі, зменшується, а, відповідно, знижується і потужність реактора. При витягуванні стержнів з активної зони відбувається зворотній процес. При введенні в активну зону стержнів аварійного захисту ядерна ланцюгова реакція припиняється.

Для відводу теплоти від тепловиділяючих елементів застосовують різноманітні системи охолодження реактора.

При проектуванні і будівництві АЕС одним із найважливіших науково-технічних завдань є забезпечення радіаційної безпеки персоналу та населення, а також попередження радіаційного забруднення оточуючого середовища. Мета радіаційного захисту полягає в тому, щоб опромінення персоналу АЕС не перевищувало максимально допустимих доз, а концентрація РР в оточуючому середовищі поблизу станції знаходилась на безпечному рівні.

В основу вирішення цієї проблеми покладена концепція створення захисних бар’єрів.

Основними з них на шляху поширення РР є оболонки твелів, трубопроводи, помпи і захисна оболонка реакторної установки.

Герметичні оболонки твелів, попереджуючі вихід продуктів поділу з палива в теплоносій, є першим бар’єром радіаційного захисту.

В процесі роботи в них можуть утворюватись мікротріщини, через які продукти поділу проникають в теплоносій. У зв’язку з цим виникає необхідність герметизації трубопроводів і помп — утворюється другий бар’єр радіаційного захисту.

Внаслідок високого тиску теплоносія, механічних і гідродинамічних вібрацій, корозії та ряду інших причин може порушуватись герметичність комунікацій, аж до розриву основного трубопроводу, що є вже максимальною проектною аварією. У зв’язку з цим виникає необхідність створення третього бар’єру радіаційного захисту, попереджуючого вихід РР в оточуюче середовище. Таким бар’єром є захисна оболонка реакторної установки.

До захисних бар’єрів відносяться також фільтри та обладнання для спеціальної водо- і газоочистки, споруди для відстою і розбавлення рідких і газоподібних середовищ, зони суворого контролю у виробничих приміщеннях і на території АЕС, контрольні пункти на маршрутах руху персоналу та транспорту, санітарні пропускники та пункти дезактивації, контроль при виході або виїзді за межі станції.
  1   2   3   4   5   6

Схожі:

Черняков Г. О., Кочін І. В., Сидоренко П.І. Медицина катастроф
Засвоїти основні положення нормативно-правових актів, що визначають організацію та функціонування ДСМК, взаємодія ДСМК з іншими аварійно-рятувальними...
Ветеринарна медицина України Ветеринарна медицина Украины
Державний науково-контрольний інститут біотехнології і штамів мікроорганізмів, ТОВ «ВЕТІНФОРМ»
Залікові ПИТАННЯ З КУРСУ "СУДОВА МЕДИЦИНА ТА СУДОВА ПСИХІАТРІЯ"
Судова медицина — це важлива галузь медицини з власними методами дослідження, яка слугує розв'язанню складних медико-біологічних...
ПСИХОЛОГІЧНА ДОПОМОГА ОЧЕВИДЦЯМ ТА ПОСТРАЖДАЛИМ
Навчальна мета: Навчатись оказувати психологічну допомогу постраждалим від техногенних катастроф
Библиографический список литературы по вопросам высшей школы
Артюх С. Виховання професійних і спеціальних психофізіологічних якостей у майбутніх інженерів – запорука зниження ризику техногенних...
Профільна спрямованість учнів Сарненської гімназії
Падають вертольоти і літаки, теплоходи не можуть розминутися у відкритому морі, солдати і офіцери помилково вбивають один одного,...
Друковані матеріали
Ковалёва Н. Г. Лечение растениями. Очерки по фитотерапии — М.: Медицина, 1972. — 352 с
УКРАЇНА
Сьогодні констатується дефіцит лікарських кадрів зі спеціальності «загальна практика-сімейна медицина»
ПЕРЕЛІК ПИТАНЬ ДО ПІДСУМКОВОГО КОНТРОЛЮ
Медицина Середньовіччя (Візантії, арабських народів, Тибету, середньовічної Європи)
Широков Владимир Анатольевич, Сидоренко
ДТУ передбачаються слова та семантично-значущі (ідіоматично визначені) словосполучення української мови. Це означає, що всі елементи...
Додайте кнопку на своєму сайті:
Портал навчання


При копіюванні матеріалу обов'язкове зазначення активного посилання © 2013
звернутися до адміністрації
bibl.com.ua
Головна сторінка