1.4. Енергія активації
Як зазначалось, умовою елементарного акту взаємодії є зіткнення частинок реагуючих речовин. Проте не кожне зіткнення може спричинити хімічну взаємодію. Справді, хімічна взаємодія передбачає перерозподіл електронної густини, утворення нових хімічних зв'язків і перегрупування атомів. Отже, крім зіткнення, для взаємодії частинок необхідно, щоб їх енергія була більшою за енергію відштовхування (енергетичний бар'єр) між їхніми електронними оболонками.
Частина молекул у системі внаслідок перерозподілу енергії завжди має певний надмір енергії порівняно з середньою енергією молекул. Тому вони можуть подолати енергетичний бар'єр і вступити в хімічну взаємодію. Такі реакційнодатні молекули дістали назву активних молекул. Різниця між середньою енергією системи і енергією, необхідною для перебігу реакції, називається енергією активації реакції. Вона потрібна для подолання енергетичного бap'єру.
Наявність енергетичного бар'єру призводить до того, що багато які реакції, перебіг яких цілком можливий, самовільно не починаються. Наприклад, вугілля, дерево, нафта, які здатні окислюватись і горіти на повітрі, за звичайних умов не займаються. Це пов’язано з великою енергією активації відповідних реакцій окислення. Підвищення температури збільшує кількість активних молекул і тому дедалі більша кількість молекул кисню, вугілля, дерева і нафти має необхідний запас енергії для початку реакції. При певній температурі швидкість реакції досягає певної величини і починається реакція горіння. Отже, під час хімічного процесу перехід системи вихідних речовин з енергетичним станом Евих у енергетичний стан продуктів реакції Епр здійснюється через енергетичний бар'єр, який дорівнює енергії активації системи ΔЕакт. При цьому тепловий ефект реакції дорівнює
∆H = Eпр - Евих
На рис. 2 наведено енергетичну схему взаємодії водню і йоду. Характерною особливістю цієї реакції є те, що під час взаємодії активних молекул водню і йоду спочатку утворюється проміжна сполука Н2 • • • І2, яка називається активним комплек-сом. Саме в цьому комплексі відбувається розрив зв'язків Н—Н і І—І і утворення нових зв'язків Н—І.
Як видно з рис.2, енергія активації реакції ∆Еакт менша за енергію дисоціації ∆Едис вихідних молекул на вільні атоми. Таким чином, перебіг реакції через проміжний активний комплекс енергетично вигідніший, ніж перебіг реакції через повний розрив зв'язків вихідних молекул і утворення вільних атомів. Більшість хімічних реакцій відбувається через стадію утворення проміжних активних комплексів, Рис.2. Енергетична схема взаємодії водню і йоду
а енергія їх утворення є енергією активації реакції.
Енергія активації ∆Еакт — важлива характеристика хімічних перетворень. Саме енергія активації затримує або робить неможливими багато які реакції, які з погляду термодинаміки можуть відбуватися самовільно. Якби енергія активації для всіх реакцій дорівнювала нулю (∆Еакт = 0), то в природі відбувалося б безліч хаотичних хімічних реакцій, для яких величина ∆G від'ємна. Так, вугілля і нафта при контакті з повітрям загорілися б, азот повітря і вода утворили б розчин азотної кислоти, живі клітини зруйнувалися б внаслідок гідролізу.
Отже, існування багатьох молекул, кристалічних речовин і навіть живих клітин можливе лише тому, що їхні перетворення і руйнування пов'язані з подоланням значного енергетичного бар'єру.
1.5. Вплив температури на швидкість реакції
Підвищення температури реагуючих речовин внаслідок збільшення швидкості молекул приводить до зростання загальної енергії системи і відповідно до збільшення відносного вмісту активних молекул, що рівнозначно зростанню швидкості хімічної реакції. Вплив температури і енергії активації на швидкість хімічних реакцій можна виразити за допомогою залежності константи швидкості реакції k від температури Т і ∆Еакт:
, (4)
де А — множник Арреніуса, пропорційний числу зіткнень молекул.
Якщо концентрації реагуючих речовин дорівнюють 1 моль/л, то рівняння Арреніуса (4) дає змогу виразити залежність швидкості реакцій від температури:
(5)
Оскільки в рівнянні (5) температура входить у показник степені, то швидкість хімічних реакцій дуже залежить від зміни температури.
Експериментально встановлено, що залежність швидкості хімічної реакції від температури можна виразити у вигляді емпіричного правила Вант-Гоффа: підвищення температури на кожні 10 градусів збільшує швидкість реакції приблизно в 2—4 рази.
У математичній формі правило Вант-Гоффа записується так:
(6)
де ∆to— збільшення температури; v1 — швидкість реакції до підвищення температури; v2— швидкість реакції після підвищення температури (при температурі t2); γ— температурний коефіцієнт швидкості реакції (γ == 2—4).
Рівняння (6) є приблизним, тому що швидкість реакції крім температури залежить також від енергії активації ∆Еакт, яка, в свою чергу, залежить від температури.
|