Практичне заняття 3 Санітарно-гігієнічні вимоги до умов праці


Скачати 0.79 Mb.
Назва Практичне заняття 3 Санітарно-гігієнічні вимоги до умов праці
Сторінка 5/7
Дата 21.04.2013
Розмір 0.79 Mb.
Тип Документи
bibl.com.ua > Географія > Документи
1   2   3   4   5   6   7


Для розрахунку штучного освітлення використовують, в основному, три методи:

  • світлового потоку (коефіцієнту використання),

  • точковий,

  • питомої потужності.

Метод світлового потоку призначений для розрахунку загального рівномірного освітлення горизонтальних поверхонь. Цей метод дозволяє врахувати як прямий світловий потік, так і відбитий від стін та стелі. Світловий потік лампи Фл визначають за формулою:



де Е — нормована освітленість, лк;

S — площа освітлюваного приміщення, м2;

kз — коефіцієнт запасу, що враховує зниження освітленості в результаті забруднення та старіння ламп (kз=1,3—1,8);

Z— коефіцієнт нерівномірності освітлення (Z=1,1—1,15);

N — кількість світильників;

n — кількість ламп в світильнику;

 — коефіцієнт використання світлового потоку. Коефіцієнт визначається за світлотехнічними таблицями залежно від показника приміщення і, коефіцієнтів відбиття стін та стелі. Показник приміщення i знаходиться за формулою:



де a I b — довжина і ширина приміщення, м;

hр — висота світильника над робочою поверхнею, м.

Порахувавши світловий потік лампи Фл, за таблицею вибирають найближчу стандартну лампу і визначають електричну потужність всієї освітлювальної установки.

Точковий метод призначений для розрахунку локалізованого та комбінованого освітлення, а також освітлення похилих площин. В основу точкового методу покладене рівняння:



де I — сила світла в напрямку від джерела на задану точку робочої поверхні, кд;

 — кут падіння світлових променів, тобто кут між променем та перпендикуляром до освітлюваної поверхні;

r — відстань від світильника до заданої точки.

Для практичного використання e формулу підставляють коефіцієнт запасу k та значення r = hр/соs, тоді



Значення сили світла I приводяться в світлотехнічних довідниках.

Метод питомої потужності вважається найбільш простим, однак і найменш точним, тому його застосовують лише при наближених розрахунках. Цей метод дозволяє визначити потужність кожної лампи Рл (Вт) для створення e приміщенні нормованої освітленості



де р — питома потужність, Вт/м2 (приймається за довідниками для приміщень даної галузі);

S — площа приміщень, м2;

N — число ламп в освітлювальній установці.

Для вимірювання світлотехнічних величин застосовують люксметри, фотометри, вимірювачі видимості тощо. У виробничих умовах для контролю освітленості робочих місць та загальної освітленості приміщень найчастіше використовують люксметри типів Ю—116, Ю—117 та універсальний портативний цифровий люксметр-яскравомір ТЗС 0693. Робота цих приладів базується на явищі фотоефекту — перетворенні світлової енергії в електричну.
2. Гігієнічне нормування умов праці за показниками шуму, вібрації, ультразвуку, інфразвуку, випромінювання та засоби захисту від них.

Шум — це будь-який небажаний звук, котрий заважає. Негативний вплив шуму на продуктивність праці та здоров'я людини загальновідомий. Під час роботи в шумних умовах продуктивність ручної праці може знизитись до 60%, а кількість помилок, що трапляються при розрахунках, зростає більше, ніж на 50%. При тривалій роботі в шумних умовах перш за все уражаються нервова та серцево-судинна системи та органи травлення. Зменшується виділення шлункового соку та його кислотність, що сприяє захворюванню гастритом. Необхідність кричати при спілкуванні у виробничих умовах негативно впливає на психіку людини.

Вплив шуму на організм людини індивідуальний. У деяких людей погіршення слуху настає через декілька місяців, а у інших воно не настає через декілька років роботи в шумі. Встановлено, що для 30% людей шум є причиною передчасного старіння.

Наслідком шкідливої дії виробничого шуму можуть бути професійні захворювання, підвищення загальної захворюваності, зниження працездатності, підвищення ступеня ризику травм та нещасних випадків, пов'язаних з порушенням сприйняття попереджувальних сигналів, порушення слухового контролю функціонування технологічного обладнання, зниження продуктивності праці.

Виробничим шумом називається шум на робочих місцях, на дільницях або на територіях підприємств, котрий виникає під час виробничого процесу.

Шум як фізичне явище — це коливання пружного середовища. Він характеризується звуковим тиском як функцією частоти та часу. З фізіологічної точки зору шум визначається як відчуття, що сприймається органами слуху під час дії на них звукових хвиль в діапазоні частот 16 — 20000 Гц. Загалом шум — це безладне поєднання звуків різної частоти та інтенсивності.

Звуковими хвилями називаються коливні збурення, що поширюються від джерела шуму в навколишнє середовище.

Довжина хвилі ()— це відстань, котру проходить звукова хвиля протягом періоду коливання (відстань між двома сусідніми шарами повітря, що мають однаковий звуковий тиск, виміряний одночасно).

Швидкість звуку (С) залежить від фізичних властивостей тіла (густини, пружності тиску тощо), в котрому поширюється звук та від температури. В повітрі збільшення швидкості складає 0,6 м/с при підвищенні температури на 1 °С.

Частота коливань (f) — число коливань за одну секунду. Одне коливання за секунду — 1 Гц.

Чутні звуки обмежуються певною частотою звуку. Людина чує звуки в частотному діапазоні 16—20000 Гц. Звуки з частотою 30—300 Гц вважаються низькими, з частотою 300—800 Гц — середніми, з частотою понад 800 Гц — високими.

Крім швидкості звуку С, розрізняють швидкість коливного руху частинок в звуковій хвилі V, котра залежить від амплітуди коливань (тобто від звукового тиску р) та частоти

Повітряний звук поширюється у вигляді поздовжніх хвиль, тобто хвиль, в котрих коливання частинок повітря співпадають з напрямком руху звукової хвилі. Найбільш поширена форма поздовжніх звукових коливань — сферична хвиля. Її випромінює рівномірно в усі сторони джерело звуку, розміри котрого малі порівняно з довжиною хвилі.

Структурний звук поширюється у вигляді поздовжніх та поперечних хвиль. Поперечні хвилі відрізняються від поздовжніх тим, що коливання в них відбуваються в напрямку, перпендикулярному напрямку поширення хвилі. Рух звукової хвилі в повітрі супроводжується періодичним підвищенням та пониженням тиску. Тиск, що перевищує атмосферний, називається акустичним, або звуковим тиском. Чим більший звуковий тиск, тим гучніший звук.

Мірою інтенсивності звукових хвиль в будь-якій точці простору є величина звукового тиску — надлишковий тиск в даній точці середовища порівняно з тиском за відсутності звукового поля. Одиниця вимірювання звукового тиску р, Н/м2; 1Н/м2=1Па (Паскаль). Існують нижня та верхня межі чутності. Нижня межа чутності називається порогом чутності, верхня — больовим порогом.

Порогом чутності називається найменша зміна звукового тиску, котру ми відчуваємо.

Больовий поріг — це максимальний звуковий тиск, котрий сприймається вухом як звук. Тиск понад больовий поріг може викликати пошкодження органа слуху.

Величина потоку звукової енергії, що проходить за 1 с через площу 1м2, перпендикулярно до напрямку поширення звукової хвилі, є мірою інтенсивності звуку або сили звуку. Сила звуку виражається залежністю



Силою звуку характеризується гучність. Чим більший потік енергії, що випромінюється джерелом звуку, тим вища гучність. Звукова потужність джерела:



де S — площа.

При великому числі джерел звуку їх звукова потужність рівна сумі потужностей окремих джерел:

W = W1 +W2+W3+…+ Wn , Вт

В зв'язку з тим, що між слуховим сприйняттям та подразненням існує приблизна логарифмічна залежність, для вимірювання звукового тиску, сили звуку та звукової потужності прийнята логарифмічна шкала. Це дозволяє великий діапазон значень (за звуковим тиском — 106, за силою звуку — 1012) вкласти у порівняно невеликий інтервал логарифмічних одиниць. В логарифмічній шкалі кожен наступний ступінь цієї шкали більший від попереднього в 10 разів. Це умовно вважається одиницею вимірювання 1бел (Б). В акустиці використовується дрібніша одиниця — децибел (дБ), рівна 0,1 Б.

Рівень сили звуку в децибелах виражається:

, дБ

Рівень звукового тиску виражається:



Крім рівня звуку та рівня звукового тиску існує поняття рівня звукової потужності:

, дБ

де W0=1012, Вт — порогові значення звукової потужності.

Спектром звукової потужності (звукового тиску) називається сукупність рівнів звукової потужності, виміряних в стандартних смугах частот — октавних, третиннооктавних, вузькосмугових.

Нерівномірність випромінювання шуму джерела в різних напрямках виражається за допомогою фактора направленості:



де р — середньоквадратичне значення звукового тиску в заданій точці, Н/м2;

рсер — середньоквадратичне значення звукового тиску у заданій точці при рівномірному випромінюванні тієї ж звукової потужності у сферу, Н/м2.

Загальний рівень звукового тиску, який створюється багатьма джерелами шуму, визначається за формулою, дБ:



де n-. загальна кількість джерел шуму, шт.

Сумарний рівень звукового тиску при одночасній дії двох неоднакових джерел з рівнями L1 і L2 можна визначити за формулою, дБ:



де L1 - більший з двох рівнів, що додаються, дБ;

-поправка.

Наприклад, при наявності двох джерел шуму з рівнями звукового тиску L1 = 85 дБ і L2 = 83 дБ сумарний рівень звукового тиску обох джерел становить

Lзаг = 85+2 = 87 дБ.

Рівні шуму, які створюються однаковими джерелами, визначаються за формулою, дБ:



За цієї формулою, два однакових джерела створюють сумарний рівень шуму на 3 дБ більший, ніж кожне із джерел.

Методи та засоби колективного та індивідуального захисту від шуму.

Боротьба з шумом в джерелі його виникнення. Це найбільш дієвий спосіб боротьби з шумом. Створюються малошумні механічні передачі, розроблено способи зниження шуму в підшипникових вузлах, вентиляторах.

Зниження шуму звукопоглинанням та звукоізоляцією. Об'єкт, котрий випромінює шум, розташовують у кожусі, внутрішні стінки якого покриваються звукопоглинальним матеріалом. Кожух повинен мати достатню звукопоглинальну здатність, не заважати обслуговуванню обладнання під час роботи, не ускладнювати його обслуговування, не псувати інтер'єр цеху. Різновидом цього методу є кабіна, в котрій розташовується найбільш шумний об'єкт і в котрій працює робітник. Кабіна зсередини вкрита звукопоглинальним матеріалом, щоб зменшити рівень шуму всередині кабіни, а не лише ізолювати джерело шуму від решти виробничого приміщення.

Зниження шуму звукоізоляцією. Суть цього методу полягає в тому, що шумовипромінювальний об'єкт або декілька найбільш шумних об'єктів розташовуються окремо, ізольовано від основного, менш шумного приміщення звукоізолювальною стіною або перегородкою. Звукоізоляція також досягається шляхом розташування найбільш шумного об'єкта в окремій кабіні. При цьому в ізольованому приміщенні і в кабіні рівень шуму не зменшиться, але шум впливатиме на менше число людей. Звукоізоляція досягається також шляхом розташування оператора в спеціальній кабіні, звідки він спостерігає та керує технологічним процесом. Звукоізоляційний ефект забезпечується також встановленням екранів та ковпаків. Вони захищають робоче місце і людину від безпосереднього впливу прямого звуку, однак не знижують шум в приміщенні.

Зниження шуму акустичною обробкою приміщення. Акустична обробка приміщення передбачає вкривання стелі та верхньої частини стін звукопоглинальним матеріалом. Внаслідок цього знижується інтенсивність відбитих звукових хвиль. Додатково до стелі можуть підвішуватись звукопоглинальні щити, конуси, куби, встановлюватись резонаторні екрани, тобто штучні поглиначі. Штучні поглиначі можуть застосовуватись окремо або в поєднанні 3 личкуванням стелі та стін. Ефективність акустичної обробки приміщень залежить від звукопоглинальних властивостей застосовуваних матеріалів та конструкцій, особливостей їх розташування, об'єму приміщення, його геометрії, місць розташування джерел шуму. Ефект акустичної обробки більший в низьких приміщеннях (де висота стелі не перевищує 6 м) витягненої форми. Акустична обробка дозволяє знизити шум на 8 дБА.

Заходи щодо зниження шуму слід передбачати на стадії проектування промислових об'єктів та обладнання. Особливу увагу слід звертати на винесення шумного обладнання в окреме приміщення, що дозволяє зменшити число працівників в умовах підвищеного рівня шуму та здійснити заходи щодо зниження шуму з мінімальними витратами коштів, обладнання та матеріалів. Зниження шуму можна досягти лише шляхом знешумлення всього обладнання з високим рівнем шуму. Роботу щодо знешумлення діючого виробничого обладнання в приміщенні розпочинають зі складання шумових карт та спектрів шуму, обладнання і виробничих приміщень, на підставі котрих виноситься рішення щодо напрямку роботи.

Інфразвук — це коливання в повітрі, в рідкому або твердому середовищах з частотою менше 16 Гц.

Інфразвук людина не чує, однак відчуває: він справляє руйнівну дію на організм людини. Високий рівень інфразвуку викликає порушення функції вестибулярного апарату, зумовлюючи запаморочення, біль голови. Знижується увага, працездатність. Виникає почуття страху, загальна немічність. Існує думка, що інфразвук сильно впливає на психіку людей.

Всі механізми, котрі працюють при частотах обертання менше 20 об/с, випромінюють інфразвук. При русі автомобіля зі швидкістю понад 100 км/год він є джерелом інфразвуку, котрий утворюється за рахунок зриву повітряного потоку з його поверхні. В машинобудівній галузі інфразвук виникає при роботі вентиляторів, компресорів, двигунів внутрішнього згорання, дизельних двигунів.

Завдяки великій довжині інфразвук поширюється в атмосфері на великі відстані. Практично неможливо зупинити інфразвук за допомогою будівельних конструкцій на шляху його поширення. Неефективні також засоби індивідуального захисту. Дієвим засобом захисту є зниження рівня інфразвуку в джерелі його випромінювання. Серед таких заходів можна виділити наступні:

— збільшення частот обертання валів до 20 і більше обертів на секунду;

— підвищення жорсткості коливних конструкцій великих розмірів;

— усунення низькочастотних вібрацій;

— внесення конструктивних змін в будову джерел, що дозволяє перейти з області інфразвукових коливань в область звукових; в цьому випадку їх зниження може бути досягнуте застосуванням звукоізоляції та звукопоглинання.

Ультразвук широко використовується в багатьох галузях промисловості. Джерелами ультразвуку є генератори, котрі працюють в діапазоні частот від 12 до 22 кГц для обробки рідких розплавів, очищення відливок, в апаратах для очищення газів. В гальванічних цехах ультразвук виникає під час роботи очищувальних та знежирювальних ванн. Його вплив спостерігається на віддалі 25—50 м від обладнання. При завантажуванні та розвантажуванні деталей має місце контактний вплив ультразвуку.

Ультразвукові генератори використовуються також при плазмовому та дифузійному зварюванні, різанні металів, при напилюванні металів.

Ультразвук високої інтенсивності виникає під час видалення забруднень, при хімічному травленні, обдуванні струменем стисненого повітря при очищенні деталей, при збиранні .

Під час промивання та знежирення деталей використовується ультразвук в діапазоні від 16 до 44 кГц інтенсивністю до (6—7)104 Вт/м2, а при контролі складальних з'єднань — в діапазоні частот понад 80 кГц.

Ультразвукові коливання поширюються у всіх згаданих вище середовищах з частотою понад 16000 Гц.

Ультразвук викликає функціональні порушення нервової системи, головний біль, зміни кров'яного тиску та складу і властивостей крові, зумовлює втрату слухової чутливості, підвищену втомлюваність.

Ультразвук впливає на людину через повітря, а також через рідке і тверде середовище.

Для захисту від ультразвуку, котрий передається через повітря, застосовується метод звукоізоляції. Звукоізоляція ефективна в області високих частот. Між обладнанням та працівниками можна встановлювати екрани. Ультразвукові установки можна розташовувати в спеціальних приміщеннях. Ефективним засобом захисту є використання кабін з дистанційним керуванням, розташування обладнання в звукоізольованих укриттях. Для укриттів використовують сталь, дюралюміній, оргскло, текстоліт, личковані звукопоглинальними матеріалами.

Звукоізолюючі кожухи на ультразвуковому обладнанні повинні мати блокувальну систему, котра вимикає перетворювачі при порушенні герметичності кожуха.

У випадку дії ультразвуку захист забезпечується засобами віброізоляції. Використовують віброізолюючі покриття, гумові рукавиці, гумові килимки.

Вібрація серед всіх видів механічних впливів для технічних об'єктів найбільш небезпечна. Знакозмінні напруження, викликані вібрацією, сприяють накопиченню пошкоджень в матеріалах, появі тріщин та руйнуванню. Найчастіше і досить швидко руйнування об'єкта настає при вібраційних впливах за умов резонансу. Вібрації викликають також й відмови машин, приладів.

Вібрація викликає порушення фізіологічного та функціонального станів людини. Стійкі шкідливі фізіологічні зміни називають вібраційною хворобою. Симптоми вібраційної хвороби проявляються у вигляді головного болю, заніміння пальців рук, болю в кистях та передпліччі, виникають судоми, підвищується чутливість до охолодження, з'являється безсоння. При вібраційній хворобі виникають патологічні зміни спинного мозку, серцево-судинної системи, кісткових тканин та суглобів, змінюється капілярний кровообіг.

Функціональні зміни, пов'язані з дією вібрації на людину-оператора -— погіршення зору, зміни реакції вестибулярного апарату, виникнення галюцинацій, швидка втомлюваність. Негативні відчуття від вібрації виникають при прискореннях, що складають 5% прискорення сили ваги, тобто при 0,5 м/с2. Особливо шкідливі вібрації з частотами, близькими до частот власних коливань тіла людини, більшість котрих знаходиться в межах 6...30 Гц.

Резонансні частоти окремих частин тіла наступні:

— очі —22...27

— горло — 6...12

— грудна клітка — 2... 12

— ноги, руки — 2...8

— голова — 8...27

— обличчя та щелепи — 4...27

  • пояснична частина хребта — 4... 14

— живіт — 4...12

Вібрації. - це механічні коливання машин, механізмів та їх елементів.

За способом передачі на тіло людини вібрацію поділяють на:

  • загальну, яка передається через опорні поверхні на тіло людини,

  • локальну, котра передається через руки людини.

У виробничих умовах часто зустрічаються випадки комбінованого впливу вібрації — загальної та локальної.

Загальну вібрацію за джерелом її виникнення поділяють на:

транспортну, котра виникає внаслідок руху по дорогах;

транспортно-технологічну, котра виникає при роботі машин, які виконують технологічні операції в стаціонарному положенні або при переміщенні по спеціально підготовлених частинах виробничих приміщень, виробничих майданчиків;

технологічну, що впливає на операторів стаціонарних машин або передається на робочі місця, які не мають джерел вібрації.

Найпростішим видом вібрацій є гармонічні (синусоїдальні) коливання, які описуються рівнянням:



де X - зміщення від положення рівноваги, м;

А - амплітуда, м;

w - циклічна частота, w= 2 t;

f - частота коливання, Гц.

Миттєве значення швидкості гармонічного коливання визначається як перша похідна зміщення за часом:



миттєве значення прискорення - як друга похідна зміщення за часом:



Органи відчуття людини приймають не миттєве значення параметрів вібрацій, а діюче. Діюче значення коливальної швидкості визначається як середньоквадратичне миттєвих значень швидкості V(t) за час прискорення Т:



Характеристиками вібрацій є рівень коливальної швидкості LV і коливального прискорення La, які визначаються за формулами, дБ:





де V - середньоквадратичне значення коливальної швидкості, м/с;

V0 =5-10-8 м/с - порогове значення коливальної швидкості;

а - середньоквадратичне значення коливального прискорення, м/с2;

а0= 3-10-4 м/с2 - порогове значення коливального прискорення.

Загальні методи боротьби з вібрацією базуються на аналізі рівнянь, котрі описують коливання машин у виробничих умовах і класифікуються наступним чином:

  • зниження вібрацій в джерелі виникнення шляхом зниження або усунення збуджувальних сил;

  • відлагодження від резонансних режимів раціональним вибором приведеної маси або жорсткості системи, котра коливається;

  • вібродемпферування — зниження вібрацій за рахунок сили тертя демпферного пристрою, тобто переведення коливної енергії в тепло;

  • динамічне гасіння, тобто введення в коливну систему додаткових мас або збільшення жорсткості системи;

  • віброізоляція — введення в коливну систему додаткового пружного зв'язку, з метою послаблення передавання вібрацій, суміжному елементу конструкції або робочому місцю;

  • використання індивідуальних засобів захисту.

Зниження вібрації в джерелі її виникнення досягається шляхом зменшення сили, яка викликає коливання. Тому ще на стадії проектування машин та механічних пристроїв потрібно вибирати кінематичні схеми, в котрих динамічні процеси, викликані ударами та прискореннями, були б виключені або знижені. Зниження вібрації може бути досягнуте зрівноваженням мас, зміною маси або жорсткості, зменшенням технологічних допусків при виготовленні і складанні, застосуванням матеріалів з великим внутрішнім тертям. Велике значення має підвищення точності обробки та зниження шорсткості поверхонь, що труться.

Відлагодження від режиму резонансу. Для послаблення вібрацій істотне значення має запобігання резонансним режимам роботи з метою виключення резонансу з частотою змушувальної сили. Власні частоти окремих конструктивних елементів визначаються розрахунковим методом за відомими значеннями маси та жорсткості або ж експериментальне на стендах.

Резонансні режими при роботі технологічного обладнання усуваються двома шляхами: зміною характеристик системи (маси або жорсткості) або встановленням іншого режиму роботи (відлагодження резонансного значення кутової частоти змушувальної сили).

Вібродемпферування. Цей метод зниження вібрацій реалізується шляхом перетворення енергії механічних коливань коливної системи в теплову енергію. Збільшення витрат енергії в системі здійснюється за рахунок використання в якості конструктивних матеріалів з великим внутрішнім тертям: пластмас, металогуми, сплавів марганцю та міді, нікелетитанових сплавів, нанесення на вібруючі поверхні шару пружнов'язких матеріалів, котрі мають великі втрати на внутрішнє тертя. Найбільший ефект при використанні вібродемпферних покриттів досягається в області резонансних частот, оскільки при резонансі значення впливу сил тертя на зменшення амплітуди зростає.

Найбільший ефект вібродемпферні покриття дають за умови, що протяжність вібродемпферного шару співрозмірна з довжиною хвилі згину в матеріалі конструкції. Покриття необхідно наносити в місцях де генерується вібрація максимального рівня. Товщина вібродемпферних покриттів береться рівною 2—3 товщинам елемента конструкції, на котру воно наноситься.

Добре демпферують коливання мастильні матеріали. Шар мастила між двома спряженими елементами усуває можливість їх безпосереднього контакту, а відтак — появу сил поверхневого тертя, котрі є причиною збудження вібрацій.

Віброгасіння. Для динамічного гасіння коливань використовуються динамічні віброгасїї пружинні, маятникові, ексцентрикові, гідравлічні. Вони являють собою додаткову коливну систему з відповідною масою. Такий віброгасій кріпиться на вібруючому агрегаті і налаштовується таким чином, що в ньому в кожний момент часу збуджуються коливання, котрі знаходяться в протифазі з коливаннями агрегату. Недоліком динамічного гасія є те, що він діє лише при певній частоті, котра відповідає його резонансному режиму коливань.

Для зниження вібрацій застосовуються також ударні віброгасїї маятникового, пружинного і плаваючого типів. В них здійснюється перехід кінетичної енергії відносного руху елементів, що контактують, в енергію деформації з поширенням напружень із зони контакту по елементах, що взаємодіють. Внаслідок цього енергія розподіляється по об'єму елементів віброгасія, котрі зазнають взаємних ударів, викликаючи їх коливання. Одночасно відбувається розсіювання енергії внаслідок дії сил зовнішнього та внутрішнього тертя. Віброгасії камерного типу призначені для перетворення пульсуючого потоку газу в рівномірний. Такі віброгасії встановлюються на всмоктувальній та нагнітальній сторонах компресорів, на гідроприводах. Вони забезпечують значне зниження рівня вібрацій трубо- та газопроводів.

Динамічне віброгасіння досягається також встановленням агрегату на масивному фундаменті. Маса фундаменту підбирається таким чином, щоб амплітуда коливань підошви фундаменту не перевищувала 0,1—0,2 мм.

Віброізоляція полягає у зниженні передачі коливань від джерела збудження до об'єкта, що захищається, шляхом введення в коливну систему додаткового пружного зв'язку. Цей зв'язок запобігає передачі енергії від коливного агрегату до основи або від коливної основи до людини або до конструкцій, що захищаються.

Віброізоляція реалізується шляхом встановлення джерела вібрації на віброізолятори. У комунікаціях повітропроводів розташовуються гнучкі вставки. Застосовуються пружні прокладки у вузлах кріплення повітропроводів, в перекриттях, несучих конструкціях будівель, в ручному механізованому інструменті.

Для віброізоляції стаціонарних машин з вертикальною змушувальною силою використовують віброізолювальні опори у вигляді прокладок або пружин. Однак можлива їх комбінація. Комбінований віброізолятор поєднує пружинний віброізолятор з пружною прокладкою. Пружинний віброізолятор пропускає високочастотні коливання, а комбінований забезпечує необхідну ширину діапазону коливань, що гасяться. Пружні елементи можуть бути металевими, полімерними, волокнистими, пневматичними, гідравлічними, електромагнітними.

Засоби індивідуального захисту від вібрації застосовуються у випадку, коли розглянуті вище технічні засоби не дозволяють знизити рівень вібрації до норми. Для захисту рук використовуються рукавиці, вкладиші, прокладки. Для захисту ніг — спеціальне взуття, підметки, наколінники. Для захисту тіла — нагрудники, пояси, спеціальні костюми.

З метою профілактики вібраційної хвороби для працівників рекомендується спеціальний режим праці. Наприклад, при роботі з ручними інструментами загальний час роботи в контакті з вібрацією не повинен перевищувати 2/3 робочої зміни. При цьому тривалість безперервного впливу вібрації, включаючи мікропаузи, не повинна перевищувати 15—20 хв. Передбачається ще дві регламентовані перерви для активного відпочинку.

Всі, хто працює з джерелами вібрації, повинні проходити медичні огляди перед вступом на роботу і періодично, не рідше 1 разу на рік.

Для вимірювання вібрацій широко використовуються електричні вібровимірювальні прилади, принцип дії котрих базується на перетворенні кінематичних параметрів коливного руху в електричні величини, котрі вимірюються та реєструються за допомогою електричних приладів.

Найчастіше використовуються п'єзоелектричні перетворювачі віброприскорення — акселерометри та механічні вібрографи ВР-1.

Електромагнітні випромінювання і поля. Випромінювання оптичного діапазону. Біосфера впродовж усієї еволюції знаходилась під впливом електромагнітних полів, так званого фонового випромінювання, викликаного природними причинами. У процесі індустріалізації людство додало до цього цілий ряд факторів, посиливши фонове випромінювання. В зв'язку з цим ЕМП антропогенного походження почали значно перевищувати природний фон і дотепер перетворились у небезпечний екологічний фактор.

Усі електромагнітні поля та випромінювання діляться на природні та антропогенні.
Електромагнітні поля та випромінювання:

Природні Антропогенні
1   2   3   4   5   6   7

Схожі:

З трудового навчання 8 клас (І семестр)
Правила безпечної праці та санітарно-гігієнічні вимоги під час роботи на швейній машині
План-конспект з трудового навчання. Тема заняття: Виготовлення виробу
Теоретичні відомості: Добір матеріалів для виготовлення виробу, визначення їх кількості. Добір гачків. Послідовність виготовлення...
8. Шкільний кабінет інформатики. Комплект навчальної комп’ютерної...
Шкільний кабінет інформатики. Комплект навчальної комп’ютерної техніки і вимоги до нього. Санітарно-гігієнічні норми роботи на комп’ютері....
С.І. Черніков майор вн служби
МЕТА ЗАНЯТТЯ: Тренувати особовий склад караулу діям по Санітарно – гігієнічні та протиепідемічні заходи
ДСанПіН 4-171-10 (ДСанПіН 4-400-10). Гігієнічні вимоги до води питної,...
Санітарні норми встановлюють вимоги до безпечності та якості питної води, призначеної для споживання людиною, а також правила виробничого...
МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ ГОЛОВНИЙ САНІТАРНИЙ ЛІКАР ЗАЛІЗНИЧНОГО...
Про гігієнічні вимоги до умов перевезення залізничним транспортом організованих дитячих колективів
Тема диплому
Гігієнічні вимоги до органі-зації робочого простору: вимоги до приміщень, до організації та обладнання робочих місць з ПК
Задача охорони праці звести до мінімуму ймовірність ураження під...
Охорона праці (ОП) – це система правових, соціально-економічних, організаційно-технічних, санітарно-гігієнічних і лікувально-профілактичних...
План-конспект уроку з Охорони праці. Тема: «Вимоги до опалення, вентиляції....
Мета: навчити  дотримуватися правил санітарії та гігієни праці; засвоювати знання про виробничу санітарію, запобігання професійних...
ЛУГАНСЬКА ОБЛАСНА ДЕРЖАВНА АДМІНІСТРАЦІЯ
Міністерства охорони здоров'я надсилаємо «Гігієнічні вимоги до умов перевезення залізничним транспортом організованих груп дитячих...
Додайте кнопку на своєму сайті:
Портал навчання


При копіюванні матеріалу обов'язкове зазначення активного посилання © 2013
звернутися до адміністрації
bibl.com.ua
Головна сторінка