НАВЧАЛЬНА ПРОГРАМА З МАТЕМАТИКИ
для учнів 10-11 класів загальноосвітніх навчальних закладів
Академічний рівень
НАВЧАЛЬНА ПРОГРАМА З МАТЕМАТИКИ для учнів 10-11 класів загальноосвітніх навчальних закладів
Академічний рівень
ПОЯСНЮВАЛЬНА ЗАПИСКА
Вступ. Програма призначена для організації навчання математики на академічному рівні, якому відповідають біолого-хімічний, біолого- фізичний, біотехнологічний, хіміко-технологічний, фізико-хімічний, агрохімічний профілі природничо-математичного напряму профільного навчання, а також технологічний профіль. Для цих профілів математика є базовим (обов’язковим для вивчення) предметом, близьким до профільних навчальних дисциплін — хімії, фізики, біології, технологій.
Мета навчання математики на академічному рівні полягає у забезпеченні загальноосвітньої підготовки з математики, необхідної для успішної самореалізації особистості у динамічному соціальному середовищі, її соціалізації і достатньої для вивчення профільних предметів, для успішної майбутньої професійної діяльності в тих сферах, де математика відіграє роль апарату, специфічного засобу для вивчення й аналізу закономірностей, реальних явищ і процесів.
Досягнення зазначеної мети забезпечується виконанням таких завдань:
формування в учнів наукового світогляду, уявлень про ідеї та методи математики, її роль у пізнанні дійсності, усвідомлення математичних знань як невід’ємної складової загальної культури людини, необхідної умови повноцінного життя в сучасному суспільстві; стійкої мотивації до навчання;
оволодіння учнями мовою математики в усній та письмовій формах, системою математичних знань, навичок і вмінь, потрібних у повсякденному житті та майбутній професійній діяльності, достатніх для успішного оволодіння іншими освітніми галузями знань і забезпечення неперервності освіти;
інтелектуальний розвиток особистості, передусім розвиток в учнів логічного мислення і просторової уяви, алгоритмічної, інформаційної та графічної культури, пам’яті, уваги, інтуїції;
екологічне, естетичне, громадянське виховання та формування позитивних рис особистості;
формування життєвих і соціально-ціннісних компетентностей учня.
Змістове наповнення програми реалізує компетентнісний підхід до навчання, спрямований на формування системи відповідних знань, навичок, досвіду, здібностей і ставлення, яка дає змогу обґрунтовано судити про застосування математики в реальному житті, визначає готовність випускника школи до успішної діяльності в різних сферах. Передбачається, що випускник загальноосвітнього навчального закладу:
розпізнає проблеми довкілля, які можна розв’язати математичними методами, формулює їх математичною мовою, досліджує та розв’язує ці проблеми, використовуючи математичні знання та методи, інтерпретує отримані результати з урахуванням конкретних умов і цілей дослідження, оцінює похибку обчислень, застосовує математичні моделі при вивченні профільних предметів (інформатики, фізики, хімії, біології, технологій);
логічно мислить (аналізує, порівнює, узагальнює і систематизує, класифікує математичні об’єкти за певними властивостями, наводить контрприклади); володіє алгоритмами та евристиками;
користується джерелами математичної інформації, може самостійно її відшукати, проаналізувати та передати інформацію, подану в різних формах (графічній, табличній, знаково-символьній);
виконує математичні розрахунки (дії з числами, поданими в різних формах, дії з відсотками, наближені обчислення тощо), раціонально поєднуючи усні, письмові, інструментальні обчислення;
виконує тотожні перетворення алгебраїчних, показникових, логарифмічних, тригонометричних виразів при розв’язуванні різних задач (рівнянь, нерівностей, їх систем, геометричних задач із застосуванням тригонометрії);
аналізує графіки функціональних залежностей, досліджує їхні властивості; використовує властивості елементарних функцій при аналізі та описуванні реальних явищ, процесів, залежностей;
володіє методами математичного аналізу в обсязі, що дозволяє досліджувати властивості елементарних функцій, будувати їх графіки і розв’язувати нескладні прикладні задачі;
обчислює ймовірності випадкових подій, оцінює шанси їх настання, вибирає оптимальні рішення;
Навчальна програма з математики для учнів 10-11 класів
зображує геометричні фігури, встановлює і обґрунтовує їхні властивості; застосовує властивості фігур при розв’язуванні задач; вимірює геометричні величини, які характеризують розміщення геометричних фігур (відстані, кути), знаходить кількісні характеристики фігур (площі, об’єми).
Структура навчальної програми. Програму подано у формі таблиці, що містить дві колонки: зміст навчального матеріалу і навчальні досягнення учнів. У змісті вказано навчальний матеріал, який підлягає вивченню у відповідному класі. Вимоги до навчальних досягнень учнів орієнтують на результати навчання, які є об’єктом контролю й оцінювання.
Зміст навчання математики структуровано за темами двох навчальних курсів «Алгебра і початки аналізу» та «Геометрія» із зазначенням послідовності тем та кількості годин на їх вивчення. Такий розподіл змісту і навчального часу є орієнтовним. Учителям і авторам підручників надається право коригувати послідовність вивчення тем та змінювати розподіл годин на вивчення тем (до 10%) залежно від прийнятої методичної концепції та конкретних навчальних ситуацій.
Програмою передбачено резерв навчального часу, а також години для повторення, узагальнення й систематизації вивченого матеріалу. Спосіб використання резервного часу вчитель може обрати самостійно: для повторення на початку навчального року матеріалу, який вивчався у попередніх класах, як додаткові години на вивчення окремих тем, якщо вони важко засвоюються учнями, для проведення інтегрованих з профільними предметами уроків тощо.
Особливості організації навчання. У старшій школі вивчення математики диференціюється за трьома рівнями: рівнем стандарту, академічним і профільним. Кожному з них відповідає окрема навчальна програма.
Програма рівня стандарту визначає зміст навчання предмета, спрямований на завершення формування в учнів уявлення про математику як елемент загальної культури. При цьому не передбачається, що в подальшому випускники школи продовжуватимуть вивчати математику або пов’язуватимуть з нею свою професійну діяльність.
Програма академічного рівня задає дещо ширший зміст і вищі вимоги до його засвоєння порівняно з рівнем стандарту. Вивчення математики на академічному рівні передбачається передусім у тих випадках, коли вона тісно пов’язана з профільними предметами і забезпечує їх ефективне засвоєння. Крім того, за цією програмою здійснюється математична підготовка старшокласників, які не визначилися щодо напряму спеціалізації.
Програма профільного рівня передбачає поглиблене вивчення предмета з орієнтацією на майбутню професію, безпосередньо пов’язану з математикою або її застосуваннями.
У пропонованій програмі академічного рівня, з метою забезпечити для учнів можливість зміни рівня навчання математики, у кожному класі
в основному збережено назви і послідовність вивчення тем, передбачених програмою рівня стандарту. Зміст навчального матеріалу доповнено, а перелік навчальних досягнень учнів конкретизовано й уточнено відповідно до Державного стандарту. Частина навчального матеріалу, що подана у квадратних дужках, не є обов’язковою для вивчення і не виноситься для тематичного контролю.
При навчанні математики на академічному рівні основна увага приділяється не лише засвоєнню математичних знань, а й виробленню вмінь застосовувати їх до розв’язування практичних і прикладних задач, оволодінню математичними методами, моделями, що забезпечить успішне вивчення профільних предметів — хімії, фізики, біології, технологій. При цьому зв’язки математики з профільними предметами посилюються за рахунок розв’язання задач прикладного змісту, ілюстрацій застосування математичних понять, методів і моделей у шкільних курсах хімії, біології, фізики, технологій.
Вивчаючи математику, старшокласники мають усвідомити, що процес її застосування до розв’язування будь-яких прикладних задач розподіляється на три етапи: 1) формалізація (перехід від ситуації, описаної в задачі, до формальної математичної моделі цієї ситуації, і від неї — до чітко сформульованої математичної задачі); 2) розв’язування задачі у межах побудованої моделі; 3) інтерпретація одержаного розв’язання задачі та застосування його до вихідної ситуації.
Залежно від профілю може використовуватися варіативна складова навчального плану, що передбачає проведення факультативів, курсів за вибором, орієнтованих на посилення міжпредметних зв’язків математики з профільними предметами. Наприклад, такі курси за вибором: «Математичні методи обробки результатів хімічного експерименту», «Математичне моделювання у біології», «Прийоми графічного зображення властивостей технічних об’єктів і процесів» тощо. їх вивчення не лише посилює міжпредметні зв’язки, а й сприяє успішному засвоєнню учнями профільних предметів.
Критерії оцінювання навчальних досягнень учнів
До навчальних досягнень учнів з математики, які підлягають оцінюванню, належать:
теоретичні знання, що стосуються математичних понять, тверджень, теорем, властивостей, ознак, методів та ідей математики;
знання, що стосуються способів діяльності, які можна подати у вигляді системи дій (правила, алгоритми);
здатність безпосередньо здійснювати вже відомі способи діяльності відповідно до засвоєних правил, алгоритмів (наприклад, виконувати певне тотожне перетворення виразу, розв’язувати рівняння певного виду, виконувати геометричні побудови, досліджувати функцію на монотонність, розв’язувати текстові задачі розглянутих типів тощо);
здатність застосовувати набуті знання і вміння для розв’язання навчальних і практичних задач, коли шлях, спосіб такого розв’язання потрібно попередньо визначити (знайти) самому.
При оцінюванні навчальних досягнень учнів мають ураховуватися:
характеристики відповіді учня: правильність, повнота, логічність, обґрунтованість, цілісність;
якість знань: осмисленість, глибина, узагальненість, системність, гнучкість, дієвість, міцність;
ступінь сформованості загальнонавчальних та предметних умінь і навичок;
рівень володіння розумовими операціями: вміння аналізувати, синтезувати, порівнювати, абстрагувати, класифікувати, узагальнювати, робити висновки тощо;
досвід творчої діяльності (вміння виявляти проблеми та розв’язувати їх, формулювати гіпотези);
самостійність оцінних суджень.
Відповідно до ступеня оволодіння зазначеними знаннями і способами діяльності виокремлюються чотири рівні навчальних досягнень школярів з математики: початковий, середній, достатній, високий.
Початковий рівень — учень (учениця) називає математичний об’єкт (вираз, формули, геометричну фігуру, символ), але тільки в тому випадку, коли цей об’єкт (його зображення, опис, характеристика) запропоновано йому (їй) безпосередньо; за допомогою вчителя виконує елементарні завдання.
Середній рівень — учень (учениця) повторює інформацію, операції, дії, засвоєні ним (нею) у процесі навчання, здатний(а) розв’язувати завдання за зразком.
Достатній рівень — учень (учениця) самостійно застосовує знання в стандартних ситуаціях, вміє виконувати математичні операції, загальні методи і послідовність (алгоритм) яких йому (їй) знайомі, але зміст та умови виконання змінені.
Високий рівень — учень (учениця) здатний(а) самостійно орієнтуватися в нових для нього (неї) ситуаціях, складати план дій і виконувати його; пропонувати нові, невідомі йому (їй) раніше розв’язання, тобто його (її) діяльність має дослідницький характер.
Оцінювання якості математичної підготовки учнів здійснюється у двох аспектах: рівень оволодіння теоретичними знаннями та якість практичних умінь і навичок, здатність застосовувати вивчений матеріал під час розв’язування задач і вправ. Оцінювання здійснюється в системі поточного, тематичного контролю знань, коли бали виставляються за вивчення окремих тем, розділів та під час державної атестації.
Рівень
навчальних
досягнень
|
Бали
|
Критерії оцінювання навчальних досягнень
|
І. Початковий
|
1
|
Учень (учениця) розпізнає один із кількох запропонованих математичних об’єктів (символів, виразів, геометричних фігур тощо), виділивши його серед інших; читає і записує числа, переписує даний математичний вираз, формулу; зображує найпростіші геометричні фігури (малює ескіз)
|
|
2
|
Учень (учениця) виконує однокрокові дії з числами, найпростішими математичними виразами; впізнає окремі математичні об’єкти і пояснює свій вибір
|
|
3
|
Учень (учениця) порівнює дані або словесно описані математичні об’єкти за їх суттєвими властивостями; за допомогою вчителя виконує елементарні завдання
|
II. Середній
|
4
|
Учень (учениця) відтворює означення математичних понять і формулювання тверджень; називає елементи математичних об’єктів; формулює деякі властивості математичних об’єктів; виконує за зразком завдання обов’язкового рівня
|
|
5
|
Учень (учениця) ілюструє означення математичних понять, формулювання теорем і правил виконання математичних дій прикладами з пояснень вчителя або підручника; розв’язує завдання обов’язкового рівня за відомими алгоритмами з частковим поясненням
|
|
6
|
Учень (учениця) ілюструє означення математичних понять, формулювання теорем і правил виконання математичних дій власними прикладами; самостійно розв’язує завдання обов’язкового рівня з достатнім поясненням; записує математичний вираз, формулу за словесним формулюванням і навпаки
|
III. Достатній
|
7
|
Учень (учениця) застосовує означення математичних понять та їх властивості для розв’язування завдань у знайомих ситуаціях; знає залежності між елементами математичних об’єктів; самостійно виправляє вказані йому (їй) помилки; розв’язує завдання, передбачені програмою, без достатніх пояснень
|
|