Дослідження і аналіз методів та моделей інтелектуальних систем безперервного навчання


Скачати 285.74 Kb.
НазваДослідження і аналіз методів та моделей інтелектуальних систем безперервного навчання
Сторінка2/3
Дата18.03.2013
Розмір285.74 Kb.
ТипДокументи
bibl.com.ua > Фізика > Документи
1   2   3



Методи адаптивних гіпермедіа-систем [21–23]. Адаптація контенту та адаптація навігації – дві найбільші технології, що розглядаються системами адаптивного гіпертексту та адаптивного гіпермедіа. Метою технології адаптивного контенту є пристосування вмісту кожного вузла (сторінки) до цілей студента, знань і іншої інформації, що зберігається в моделі студента. У системі адаптивного подання сторінки є не статичними, а такими, що адаптивно генеруються для кожного користувача.

Метою технології адаптивної навігації є допомога студенту зорієнтуватися і переміщуватися у гіперпросторі за допомогою зміни вигляду видимих посилань. Наприклад, система адаптивного гіпермедіа може адаптивно сортувати, анотувати, або частково сховати посилання поточної сторінки для того, щоб спростити вибір, куди пересуватися далі. Підтримка адаптивної навігації розділяє ту саму мету, що й програмування курсу навчання – допомогти студенту знайти оптимальний шлях через навчальний матеріал. В той же час підтримка адаптивної навігації менше управляюча і більше «партнерська» ніж традиційне програмування: вона провадить студента, залишаючи йому можливість самостійно обрати наступний елемент знань для вивчення, наступне завдання для розв’язання. У контексті WWW, де гіпермедіа є базовою організаційною парадигмою, підтримка адаптивної навігації природною і ефективною.

Адаптивна фільтрація інформації (АФІ) – класична технологія з області інформаційного пошуку. Її мета – знайти декілька елементів, що відповідають інтересам користувача, у великому об’ємі (текстових) документів. У Інтернет ця технологія була використана як у пошуковому контексті, так і в контексті перегляду. Вона була застосована для пристосування результатів веб-пошуку, із використанням фільтрації і впорядкування і для вироблення рекомендацій щодо найбільш відповідних документів серед отриманого набору, використовуючи генерацію посилань. Хоча механізми, що використовуються у системах АФІ, дуже відрізняються від механізмів адаптивного гіпермедіа, на рівні інтерфейсу АФІ для Інтернет найчастіше використовують техніку адаптивної навігації.

Існує два принципово різних типи механізмів АФІ, які можуть розглядатися, як дві різні технології АФІ – фільтрація на основі вмісту і колективна фільтрація. Перша спирається на вміст документа, тоді як остання абсолютно ігнорує вміст, намагаючись замість цього підібрати користувачів, які будуть зацікавлені в однакових документах. Сучасна технологія АФІ широко використовує технології машинного навчання, особливо це стосується фільтрації на основі вмісту. Будучи дуже популярною у області інформаційних систем, АФІ проте не використовувалися у навчальному контексті у минулому. Об’єм навчального вмісту був порівняно невеликим, і потреба спрямовувати користувача до найбільш підходящого матеріалу з легкістю підтримувалася адаптивним програмуванням (плануванням) і адаптивним гіпермедіа. Однак Інтернет з його великою кількістю відкритих освітніх ресурсів зробив АФІ-технологію дуже привабливою для освітян.

Методи інтелектуальних систем навчання [20, 21] Інтелектуальний аналіз рішень має справу із студентськими розв’язками навчальних задач (які можуть змінюватись від простих запитань до комплексних програмних завдань). На відміну від неінтелектуальних контролюючих інструментів, які здатні вказати лише на вірність або хибність розв’язку, інтелектуальні аналізатори можуть сказати, що саме невірно або що розв’язано не повністю, і які пропущені чи невірні знання можуть відповідати за помилку. Інтелектуальні аналізатори здатні забезпечити студента потужною технікою зворотнього зв’язку опрацювання помилок і оновленням моделі студента. Через низьку інтерактивність і адекватність інтерфейсу Інтернет-форм ця технологія була реалізована в Інтернеті одною з перших.

Метою інтерактивної підтримки прийняття рішень є забезпечення студента інтелектуальною допомогою на кожному етапі вирішення проблеми – від надання підказки до повного виконання наступного етапу замість студента. Технологія інтерактивної підтримки прийняття рішень не так популярна у Web-системах, як у окремих інтелектуальних навчальних системах – в основному через проблеми з реалізацією. Як було показано початковими системами, чиста реалізація на стороні сервера не в змозі активно слідкувати за діями студента і може забезпечувати допомогу лише по запиту. Чиста реалізація на стороні клієнта має обмеження по складності. Необхідна функціональність і рівень складності для реалізації інтерактивної підтримки прийняття рішень потребує клієнт-серверної реалізації, але такі системи складніші в реалізації. Слід згадати, що Web-технологія асинхронного обміну даними AJAX надає відповідну технічну платформу для реалізації алгоритмів інтерактивної підтримки прийняття рішень на основі WWW.

Методи інтелектуального колективного навчання [21]. Інтелектуальне колективне навчання – група технологій, розроблена на перехресті двох областей, що початково були далеко одна від одної: комп’ютерна підтримка колективного навчання та інтелектуальні навчаючі системи (ІНС). Сучасний напрямок роботи у використанні штучного інтелекту для підтримки колективного навчання призводить до збільшення рівня взаємодії цих двох областей. Ранні роботи в області інтелектуального колективного навчання виконувались у до-Інтеренет контексті. Сьогодні ж Інтернет та дистанційна освіта забезпечили як платформу, так і зростаючий попит на технології такого типу. У Інтернет-освіті потреба у інструментах підтримки колективного навчання є критичною, тому що студенти рідко особисто зустрічаються один з одним. Інтелектуальні технології можуть корінним чином розширити можливості простих інструментів підтримки колективної роботи (таких як групи потокових дискусій та спільні дошки), що надаються різними системами управління курсами. На даний момент ми можемо зазначити як мінімум три окремі технології у групі інтелектуального колективного навчання: адаптивне формування групи і партнерства, адаптивна підтримка співробітництва та віртуальні студенти.

Технології адаптивного формування груп і партнерства намагаються використовувати знання про співпрацюючих членів групи (найчастіше ці знання представлені у моделях студента) для формування підходящої групи для різних типів колективних завдань. Це можна застосувати, наприклад, для задач по формуванню груп для спільного розв’язання задач та пошуку найбільш компетентного члена групи для відповіді на питання.

Технології для адаптивної підтримки співробітництва намагаються забезпечити інтерактивну підтримку колективного процесу так само, як системи інтерактивної підтримки прийняття рішень допомагають окремому студенту у розв’язанні проблеми. Використовуючи деякі знання про хороші і погані зразки співробітництва (які закладаються на етапі розробки системи або отримуються із журналів спілкування), системи підтримки співробітництва можуть тренувати або консультувати членів колективу. Технологія віртуальних студентів порівняно стара. Замість підтримуючого навчання або співробітництва з позиції старшого над студентами (викладача або консультанта) ця технологія намагається ввести різні типи рівноправних віртуальних партнерів у навчальне середовище, наприклад навчаючий партнер, учень або навіть порушник порядку. У контексті Інтернет-освіти, де студенти спілкуються головним чином через низько пропускні канали (електронна пошта, чат, форуми), віртуальний студент стає дуже привабливим уособленням для реалізації різних стратегій підтримки. Перспективною є інтеграція цього методу з напрямками анімованих агентів та інтелектуальної підтримки співробітництва.

Інтелектуальний моніторинг класів – технологія, дуже актуальна для дистанційної освіти. У контексті Інтернет-освіти «віддалений викладач» не може бачити вирази нерозуміння або загубленості на обличчях студентів. З таким чітким браком зворотного зв’язку стає дуже важко визначити проблемних студентів, що потребують додаткової уваги, яскравих студентів, яким слід кинути виклик. Так само важким є і визначення частин навчального матеріалу, які є занадто легкими, занадто складними, або незрозумілими. Системи освіти на основі Інтернет можуть відслідковувати кожну дію студента, проте викладачу майже неможливо самостійно зробити необхідні висновки на основі великого об’єму даних, які збираються системою. Системи інтелектуального моніторингу класу намагаються використовувати штучний інтелект, щоб допомогти викладачу в даній ситуації. Ця течія роботи зосереджена на підтримці викладача та покладається на такі технології штучного інтелекту як інтелектуальний аналіз даних (Data Mining) і машинне навчання. Можливим є також інтеграція інтелектуального моніторингу класу із адаптивною підтримкою співробітництва з метою інформування викладача про хід колективної студентської роботи і про потребу його особистого втручання для підтримки процесу.
Моделі інтелектуальних систем безперервного навчання
Автори узагальнюючої моделі адаптивної гіпермедіа-системи AHAM (Adaptive Hypertext Application Model) [23], що ґрунтується на еталонній моделі гіпертексту Декстер [24, 25] пропонують наступну структуру адаптивних гіпермедіа-систем (Рис.2).


Рис.2. Еталонна модель гіпермедіа-систем AHAM.

Автори AHAM [23] підкреслюють важливість ряду елементів в адаптивних гіпермедіа-системах:

  • Модель предметної області описує, яким чином інформація системи структурується і поєднується.

  • Модель користувача описує те, яка інформація про користувача повинна зберігатися в системі. Це включає подання цільових для користувача знань, а також і інформацію про вже відвідані ним сторінки.

  • Модель викладання, або модель адаптації, містить педагогічні правила, які визначають, яким чином модель предметної області і модель користувача поєднуються для забезпечення поточної адаптації.

  • Механізм адаптації безпосередньо виконує адаптацію через адаптування або динамічну генерацію контенту сторінок, а також налаштування адрес та типів посилань, щоб провадити кожного користувача індивідуально.


Модель предметної області. Основою моделі предметної області в AHAM є поняття. Автори AHAM [23] дуже чітко на концептуальному і технічному рівні виділяють і розмежовують поняття і інформацію системи. Поняття є семантичним матеріалом моделі предметної області. Тоді як фактична інформація, що подається користувачу представляє лише технічний рівень, який певним чином зв’язується із рівнем понять. У [26] також робиться подібне розмежування, при цьому поняття представляють зовнішню по відношенню до контенту семантичну модель предметної області.

У AHAM атомарне поняття відповідає фрагменту інформації. Таким чином це поняття репрезентується порцією інформації, що зберігається на внутрішньо-компонентному рівні. Складеними є поняття, що складаються із набору атомарних. Виділяють також такі складені поняття, що відповідають за певну сторінку – поняття-сторінки. Абстрактні складені поняття складаються із множини понять-сторінок або інших абстрактних понять. Врешті решт усі поняття структуруються за допомогою ієрархії і відношень. Предметна область таким чином моделюється за допомогою мережі понять, які в свою чергу пов’язані із відповідними фрагментами контенту.

Процес співставлення семантичних понять і контенту називають індексацією, тому що визначення набору понять для кожної сторінки нагадує індексацію сторінки за набором ключових слів. Подібна індексація, яку також можна назвати семантичною, як правило виконується вручну авторами курсів або експертами предметної області.

Кожна сторінка пов’язується з одним або більше поняттями, які описують деякий з аспектів цієї сторінки. Семантична індексація сторінок може бути однопонятійною, коли одна сторінка стосується одного і тільки одного поняття зовнішньої моделі, і багатопонятійною, коли кожна сторінка може бути співвіднесена із багатьма поняттями. Тип семантичної індексації для організації гіперпростору великою мірою визначає функціональність адаптивних технологій в системі.

Організація гіперпростору за допомогою однопонятійної індексації породжує строгі вимоги до зовнішньої моделі, яка відповідає за семантику. Тут завжди обов’язковим є наявність зав’язків між поняттями (краще декілька типів зв’язків), які будуть використовуватись для організації гіперпосилань. Іншим обмеженням є те, що цей підхід важко застосувати для вже існуючої традиційної гіпермедіа-системи з метою її перетворення на адаптивну. Багатопонятійна індексація потужніша з точки зору застосування адаптивних технологій в гіперпросторі, натомість вона вимагає глибшої проробки зовнішніх семантичних моделей.

Ще однією важливою характеристикою є тип системи з точки зору відкритості її контенту: закриті або відкриті системи [27, 28]. У системах із закритим контентом його семантична індексація проводиться на етапі створення системи. У системах із контентом, що розширюється, контент індексується автором в момент додавання в систему. При цьому більшість адаптивних гіпермедіа-систем представляють закриті системи [27]. До класу відкритих систем можна віднести інформаційно-пошукові і інформаційно-фільтруючі системи. У системах такого роду контент індексується автоматично, але не на основі моделей з використанням семантичних понять, а на основі моделей орієнтованих на ключові слова.

Нове покоління адаптивних систем доступу до інформації роблять спроби об’єднати понятійні моделі із автоматичною обробкою документів. Багато з цих систем ґрунтуються на автоматичній категоризації документів, де кожен документ автоматично співвідноситься з одним або декількома поняттями існуючої моделі предметної області [29]. Використання подібних підходів є актуальним і для освітніх Web-систем.

Слід згадати про ще один специфічний компонент, який деякі системи містять в моделі предметної області – модель задач [30, 31]. Ця модель відбиває знання про завдання, які мають виконуватись тими чи іншими робітниками. Структура завдань інтегрується із моделлю предметної області і навчальними матеріалами. Такі системи застосовують для підтримки професійної діяльності. Цей напрямок є дуже актуальним в контексті безперервного навчання.

Модель учня. Відмінність адаптивних гіпермедіа-систем від просто гіпермедіа-систем полягає у наявності у перших моделі користувача, на основі якої будується адаптація. Щоб побудувати і підтримувати актуальну модель користувача адаптивна система збирає дані із різних джерел, що включає неявне спостереження за діями користувача і явне опитування та введення ним даних. Модель користувача і адаптація є двома сторонами одного процесу. Кількість і якість інформації, яка представлена в моделі користувача, залежить від типу адаптаційного ефекту, який прагне надати система.

Основними характеристиками, які моделюються і використовуються адаптивними Web-системами є знання, інтереси, цілі, передумови, індивідуальні особливості і контекст роботи користувача. Кожна адаптивна система як правило використовує деяку підмножину даного набору.

Модель користувача залежить від способу моделювання предметної області в системі. Модель знань користувача може бути скалярною, що представляє рівень знань учня в предметній області єдиним значенням по деякій шкалі – кількісним (наприклад, від 0 до 5) або якісним (наприклад, відмінно, добре, задовільно, незадовільно) [27]. Найбільш розповсюдженою є оверлейна модель знань учня. Вона представляє знання учня як підмножину моделі предметної області, яка в свою чергу відображає знання предмета на рівні експерта. Оверлейна модель зберігає для кожного фрагмента знань предметної області деяку оцінку знань користувача по даному фрагменту. Існує також модель на основі помилок, яка представляє як коректні знання студента, так і помилкові.

Моделювання інтересів користувача – новий напрямок, характерний для Web-систем. Інтереси користувача набувають великого значення для адаптивних гіпермедіа-систем у зв’язку із збільшенням об’єму інформації і зростанням популярності таких типів інформаційно-орієнтованих систем як енциклопедії, гіпертекстові системи новин, електронні магазини, музейні гіди та інші системи, в яких доступ до інформації мотивується інтересами. Слід зазначити, що ці тенденції, а також популяризація конструктивізму в навчанні мають вплив і на освітні сервіси, і тому вимагають більшої уваги до моделі інтересів користувача в освітньому контексті. Характерним для інформаційно-пошукових і інформаційно-фільтруючих систем є побудова моделі інтересів на основі ключових слів. Натомість адаптивні гіпермедіа системи адаптували підхід на основі семантичних понять до моделювання інтересів. У даному випадку модель інтересів стає дуже схожою на оверлейну модель знань користувача. Перспективним є синтез підходів на основі ключових слів із підходом на основі понять для моделі інтересів студента.

Цілі і задачі представляють найближчу мету роботи користувача в адаптивній системі. Як правило в навчальних системах в цій моделі представляється навчальна ціль. Досягнення навчальної цілі вирішується автоматичним плануванням і визначенням послідовності навчального курсу. Цілі учня можуть моделюватися за допомогою каталогу цілей. Цей підхід дещо схожий на оверлейну модель. Його основою є заздалегідь визначений каталог можливих цілей учня, які система повинна вміти розпізнавати.

Передумови користувача стосуються його попереднього досвіду поза межами ключової предметної області системи. Сюди слід віднести професію, посадові обов’язки, досвід роботи в пов’язаних областях і навіть специфічний погляд користувача на предметну область [30, 31]. Зазначимо, що подібні характеристики є важливими в контексті безперервного навчання, проте досі вони використовувались в небагатьох системах.

Модель індивідуальних особливостей подає характеристики, які представляють індивідуальність користувача. Сюди відносяться психологічні і особистісні особливості, когнітивні стилі та фактори і навчальні стилі.

Порівняно новим напрямком є моделювання контексту роботи користувача. Сюди слід віднести представлення програмно-апаратної платформи користувача, його географічного положення та емоційного стану [27].
1   2   3

Схожі:

Технологічний підхід в освіті Педагогічні технології
Педагогічні технології – сукупність методів, форм, прийомів навчання, тотожних їм моделей управління, підпорядкованих визначеній...
Поняття про моделі та моделювання. Класифікація моделей. Поняття...
Одним із важливих методів добування нової інформації людиною, пізнання нею довколишнього світу є моделювання
Моделювання області знань в системі безперервного навчання на основі...
Ання і визначення області знань в інтелектуальній системі безперервного навчання на базі моделі Web-контенту Tree-Net і понятійно-тезисної...
Що корисного дає для економічного дослідження використання кількісних методів в економіці?
Основними напрямками використання кількісних методів є – методи економіко-математичного моделювання та методи статистичного аналізу....
“Ітераційні методи розв’язання систем лінійних рівнянь”
Мета роботи: Вивчення ітераційних методів розв’язання систем лінійних рівнянь і набуття навичок їх реалізації за допомогою математичного...
Задача полягає в тому, що необхідно перевести ОК з заданого початкового стану
Мета роботи – засвоїти методи синтезу термінальних систем автоматичного керування з використанням моделей на ЕОМ для їх аналізу
План-конспект заняття з трудового навчання студента
Теоретичні відомості: Визначення завдань проекту. Міні маркетингові дослідження. Пошук інформації, її аналіз відповідно до поставлених...
Принципи навчання у вищій школі
Принципи (лат ргіпсіріит — основа, начало) навчання вищої школи — вихідні положення теорії навчання. Вони є загальним орієнтиром...
ЧИСЕЛЬНІ МЕТОДИ РОЗВ’ЯЗУВАННЯ СИСТЕМ НЕЛІНІЙНИХ РІВНЯНЬ Ужгород –...
Мета роботи: Вивчення методів розв’язання систем нелінійних рівнянь і набуття навичок їх реалізації за допомогою математичного пакету...
ДЕРЖАВНО-ПРАВОВИЙ ІДЕАЛ У ТЕОРІЇ БЕЗПЕРЕРВНОГО ПРОГРЕСУ М. М. КОВАЛЕВСЬКОГО...
У зв’язку з цим значний інтерес має аналіз концепції визначного представника ліберальної течії М. М. Ковалевського
Додайте кнопку на своєму сайті:
Портал навчання


При копіюванні матеріалу обов'язкове зазначення активного посилання © 2013
звернутися до адміністрації
bibl.com.ua
Головна сторінка